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Abstracr We give representations for the Zamolodchikov-Faddeev algebra (UA) in the elliptic 
case and prove the self-consistency of this algebra in such a case. We also study the implications 
of our approach for those algebras which are relevant to the extension of the q-deformed aiiine 
Ai') algebra. 

1. Introduction 

Zamolodchikov-Faddeev algebras [1-5] (ZFA) are closely related to factorizable scattering 
problems, Yang-Baxter equations and exactly solvable models, thus they are important for 
both physics and mathematics. 

For a given R-matrix, one may formulate the corresponding relations for a PA. The 
R-matrix satisfies the Yang-Baxter equation (BE) [ 1-41 if such a ZFA has a non-degenerate 
representation. Conversely, if the associated R-matrix satisfies the YBE, we still need to 
know whether the ZFA has non-trivial representations. The representations of the ZFA are 
thus crucial for the study. Kulish [5,6] and Frenkel and Reshetukhin [7] have given 
the representations of the ZFA for trigonometric R-matrices. The representation of a 
Zamolodchikov algebra for the elliptic R-matrix associated with an eight-vertex mode! 
has also been given in Foda et al [XI. 

We obtain three representations of the ZFA for the elliptic 2, symmetric R-matrix [9, 101 
given by Belavin. The construction of two representations is explained in section 2. In 
section 3 we study the co-module and a solvable lattice model with non-periodic, non- 
reflecting boundary conditions and study the fusion of the ZFA, which yields the third 
representation. In section 4, we construct the L-matrices as generators of the Reshetikhin 
and Semenov-Tian-Shansky algebra (RSA) [ l l ]  and derive some relations similar to the 
algebraic relations of a quantum affine algebra given by Frenkel and Reshetikhin [7] in 
the elliptic case. We then study the reflection equation in section 5 .  Our construction of 
the representation can also be applied to some algebraic relations of the elliptic quantum 
algebra given by Foda et al 1121, which is an extension of the q-deformed affine Ai') 
algebra. This is explained in section 6. (The representation we construct is not a highest- 
weight representation.) 

* Mailing address. 
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2. The Zamolodchikov-Faddeev algebra associated with an elliptic 2, R-matrix and 
its representations 

2.1. ZFA and R-matrices 

The ZFA is the quotient of a tensor algebra generated by E'(z) ,  A i ( z )  modulo the ideal 
generated by relations (1H4). That is, the ZFA is an associative algebra generated by two 
sets of operators B'(z), A i ( z )  with exchange relations determined by the r-matrices: 

0 1  (21 - zz)Ai ,  (z1 ) A j W  = Aj (zz)Ai (21) (1) 

(2) 

(3) 

(4) 

(rZ$'(zt - z 2 ) ~ ~ ( z , ) ~ j ( z Z )  = E ~ ' ( Z ~ ) B ' ' ( Z ~ )  

( r3) ;7(z t  - 22 - $w)Bj ( z z )A t , ( z t )  = A i ( z l ) B j ' ( z ~ )  

(r4)ii i'i' (z2 - z 1  - $ z w ) A ~ ~ ( z ~ ) B ' ( z ~ )  = B ~ ' ( z ~ ) A ~ ( z ~ )  

where i. j ,  i', j '  = 0.1, . . . , n - 1, and summation over repeated indices is assumed. In most 
of the text, the four r-matrices are the same and defined by Belavin's 2, elliptic R-matrix 
[9, IO] and the function K ( z )  (in section 6, we study the case where the four r-matrices are 
not identical). 

The scalar function K ( z )  satisfying [lo, 13-151: 

is given in [IO, 1.51. The r-matrices satisfy the Yang-Baxter equation (YBE): 
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with unitarity and crossing unitarity: 

(9a) 

(9b) 

rij f 'J '  (z)r$: -'P" ( - z )  = &d jp  

ri7 icj" (z)r,,, j'i" (-z - nw) = &dj j "  

as a result of the properties of R(z)  [lo] and equation (7). 

and (4) equivalent. 

(Sa) is represented by figure 2(a). We also have a crossed YBE: 

Equation (9a) is necessary for the self-consistency of (I), (2). Equation (9b) makes (3) 

We can depict r ( z ) ,  A ( z ) .  B ( z )  and (1)-(4) graphically as shown in figure 1. The YBE 

.I * 
Figure 1. (a) ry(zi - 2 2 ) ;  (b) r;; (21 - 2 1  -;nu); (c) A , ( z ) :  (d) E?(.?); (e) equation ( I ) ;  (0 
equation (2). (g) equation (3); (h) equation (4). 

This equation can be proved by the crossing unitarity of the elliptical 2. R-matrix and 
(Sa). Figures 2@)-(d) are graphic representations of equations (86) and (9)  respectively. 
The proof of (8b) is given in figure 3. 
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Figure 2 The YBE and the unitarity of the r-maIrix: (a) equation (8n); (b) equation (8b): ( c )  
eqmion (9a). (d) equation (9b). 

2.2. Zeros and poles of K (I) 
K ( z )  is given in the form of a product expansion in 11.51. For simplicity we may further 
assume that 7 ,  w ,  z satisfy 

j r  +Iw +mz=O + j = O  
for integers j ,  1 ,  m. Then the zeros of K ( z )  are ( k  is an integer): 

z = w + k n w  k ) O  

z = -(k + 1)nw k > 0. (IO@ 
The poles are 

z = ( k + l ) n w  k ) O  

z = -w  - ( k +  1)nw k > 0. (lob) 
Thus the zeros of r ( z )  are at (lob) while the poles are at (loa), since R ( z )  is always 

regular and never vanishes. We denote the set of (10~)  as [z,]. The points in (10) are 
singular points of r (z ) .  r ( z )  always has an inverse and crossing inverse excluding these 
points. 
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I t (9b) - 1% t, r 

I’ 

Figure 3. A pmof of (86) 

2.3. Normal ordering of monomials of B ,  A 

For a monomial of B’s and A’s, we can change the ordering of these operators using (l), (2), 
(3) and (4). That is, we can expand this monomial by a linear combination of monomials 
to other orderings, provided the r(z)-mahices encountered are not divergent. However, 
since r ( z )  has poles, we will not be able to change a given ordering to all other orderings 
for certain sets of operators. Henceforth we assume that, for a given set of A(z,)’s and 
B ( z ~ ) ’ s .  we can properly arrange the spectra zn and Zb in order. In this arrangement, spectra 
of different types of operator ( A  or B )  are regarded as different, even though they are equal 
in value. For any pair of spectra of the same type of operator, if z precedes z‘, then 

z - z’ [z,]. (1 1 4  

For any pair of spectra of different types of operator, if tu (or Zb) precedes Zb (or z.) 
then 

(1 1b) 

In ( l lqb) ,  [z,] denotes the set of z’s of poles of the r-maaix in (loa). (Note that this 
arrangement is not always possible. A counter example is: Zb = z - in , ,  z + in,, 
za = z . )  

We then arrange the ZFA generating operators according to the ordering of their specmm 
(if z precedes z’, then c ( z )  is to the left of c(z’), where c is A and B).  The operators are 
said to be normally ordered if the monomial is arranged in this way. The monomial is, for 
example, in the form: 

F E  B’”(zI)B’”(zI) .  . , A  i,,(zz)Aia(z2) ... A ~ . , , ~ ( z / - ~ ) B ~ ’ ( z / ) A ~ ~ , , , ~ ( z ~ + ~ ) . .  . A ~ # . * ( z N )  

I 
Zb - Zu - p u  6 [ Z p ]  or Zo - Zb - + @ [ Z p ] .  

(114 

where Z I  precedes zp in the order described earlier when k c k‘. (Some A’s and B’s could 
be absent for certain z’s.) 
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Pmposition 1. Any two adjacent operators can be exchanged to give noma1 ordering by 
(11444). 

Proof. (i) If they have the same spectrum and the same type, they are already in normal 
order. 

(ii) If they are of the same type bur have a different spectrum, we can use ( I ) ,  (2) to 
change their order if they are not in normal order. Due to (1 la), the r-matrix encountered 
is not divergent. 

(iii) If they are of different type and not in normal order, we can use (3), (4) to change 
0 

Thus any monomial can always be expressed as a linear combination of normal ordered 

their order. Due to (1 IC), the r-mahix encountered is again not divergent. 

monomials. 

Remark I .  If we encounter the zero point of the r-matrix in the procedure, we get zero as 
the result. 

2.4. Fundamental representation of ZFA 

Assume that we have defined the ordering of the spectra, say, 

0;) < (t,”) < (r,”) < (tqn) < (ts”) . . . (W 

where ( t )  denotes the position number o f t  in the normal ordering. Note that the spectra 
of different types of operator must be in different positions, even though they are equal in 
value. For example, in (12a), we may have 

t,” =ti t; = t ;  .... 

We then have normal ordered monomials of the zFA generators in which all operators are 
arranged according to the ordering of the spectra. For example, 

1 (identity operator of ZFA) 

are all normal ordered monomials. Similarly we define vectors as the formal monomials 
according to the ordering of spectra. For example, corresponding to (12b) we have 
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11) 

laij (tP)aiz(tP)ai3 (0) 
laii (r,”)aiz(t,“)) 

lail (tl“)ai, Of)ai;(c)) (12c) 

lbj, (ti)b” (t,b)q(tS”)) 

lbj’ (&b” (ti)ai, ( t : ) ~ i ~ ( t g ) )  

~ 6 ’ 1 ’ ( ~ ~ ) b J ’ 2 ( ~ ~ ) .  . .ai,,(~z)ai~~(Zz). . . a i , - ~ , ~ ( ~ i - ~ ) b ~ ’ ( ~ ~ ) a i , + ~ , , ( ~ i + ~ ) .  . .acN,k(Z~)) .  

That is each normal ordered monomial of ZFA corresponds to a vector. We regard all 
these vectors as the base vectors of a space H on which we can construct a representation 
Of ZFA. 

Remark 2. Even though we do not know whether the normal ordered monomials of ZFA 
aye linearly independent or not under relations (1)-(4), we still regard all base vectors in 
(12) as independent in H. 

We next define the action of operators Ai@)  and B ’ ( f )  on the base vectors 1”). First, 
we find the corresponding normal ordered monomial of ZPA which has the same form as 
w. Then the operators A i ( t ) ( B j ( t ) )  act on the monomial. We successively exchange the 
A ( t ) ( B ( r ) )  with the operators in the monomial using (1)-(4), until A ( t ) ( B ( r ) )  arrives at its 
conect position. We thus have a unique linear combination of the normal ordered monomials 
of ZFA, from which we have a corresponding linear combination of base vectors in H. We 
define this linear combination of base vectors as a resulting vector Ai(t)IY). For example, 
we have 

Ai(tP)I1) lai(tP)) 

Ai(t;)lai, (tg)ai2(t;)) = Ibi(@ai, (f%z(fiY)) 

Ai ( t i )  lai, (tp)ai, (tP)ai; (tl“)) 
i’ i,, 

= r,!:r(t; - g)rii i l  ( t;  - t l ) r ,$“( t f  - “)la,l(t;)ui;(tp)ai;(t~)ai(t2~)) 

~ ~ ( t , ~ ) l a i ,  (t;)ai,(t;)ai,(t:)) = ri,xi ( t ;  - t:)r$,”(t; - t:)~ai; (tP)ai;(rp)ai,(r,U)ai,(t~)) 

Ai(t50)lbj1(~)b”(t,b)ai,(t~)ai,(tSn)) = rQ/’(f; - t2 b - I p w ) r . , . .  i”h (ts (i - tz 6 - p w )  I ’ 12 

x r,!!:r(t,“ - f,”)lb’;(t,b)b’;(ti)ui,(t:)ai,~ (tt)ai,(t;)). 

The action of Bj( t )  is similar: 

Bj(r,b)iai,(rf)ai~(rp)ai,(t:)) = rj,i, ji; (ts b - t; - pur) I 

B ~ ( z o ( J ~ ) )  = $;;, (zl - zl)ririz ( z l  - a) . . . 

yi; b x rjtti2(t3 - t; - fnw)lail(tP)ai~(tf)b’”(t,b)ai,(C)). 

For the vector I f ) ,  we have 
. . I  



3164 Heng Fan er al 

Figure 4. (a) F, a base vector of H; (b) B ’ ( u ) ( F ) ;  and (c) A i ( r r + l ) ( F ) ,  

Note that the right-hand side of (13) is a linear combination of normal ordered monomials, 
which belong to the space H. The vector Ai(zr)lf)  is similarIy obtained. They are 
pictorially expressed in figure 4. 

We next check that the action defined above is a representation of ZFA. 
The left- and right-hand sides of equations (1)-(4) act on a vector F in H. We assume 

that the r-matrices in the left-hand side of these equations are well defined. The resulting 
vector produced by the action of the left-hand side on a vector F is depicted in (bat. bp2) 
of figure 5, which is a linear combination of the basis of H, with the coefficients being 
polynomials of the elements of the r-matrices. These r-matrices are depicted as the crossings 
of lines in the figure. The vector produced by the action of the right-hand side of equation 
on the vector F is depicted in (bor3. bp3) in figure 5.  

Note that all r-matrices in the graph are well defined, we can then use (84, (8b) (which 
does not yield new r-matrices) and (9a), (9b) (in the proof we need only to eliminate 
two well defined r-matrices) to prove that (16) is equivalent to (36) respectively. In our 
construction, we need only (8) and (9). which are equivalent to the following statement. 

We can reverse the ordering of three operators by two different routes: 
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(b j  b d  

Figure 5. (a) The successive action of two operators: I ,  F. a vector of H: 2, CzF: 
3. C I ( C ~ F ) . C ~ C ~  is in the right order; 4, Cl(CzF). C I C ~  is the wrong order. Q) The action 
described in figure 6 is a represenlation of ZFA: ClCl = rlzCzC~: (hz)C~Ct is in the right 
order (normal order): (b,9)ClC2 is in the wrong order. 

where the Ci’s are the generating operators of the ZFA. Thanks to (Sa) and (Sb), these two 
routes give the same final expansion. We also have unitarity and crossing unitarity of r ( z )  
which imply that we can change the order of the two operators twice and recover the original 
form. We can check whether a ZFA is self-consistent by checking these two relations. 

From these we can see that all the relations (1)-(4) are satisfied for the action of the 
operators in the space H, if the r-matrices in (11-(4) are well defined, as depicted in figure 5. 

Thus we have a representation of the ZFA. We call it the fundamental representation. 
The ZFA related to the elliptical Z, symmetric R-matrix is therefore self-consistent. 

2.5. PBW base of ZFA 

The normal ordered monomials described i n  section 2.3 together with the identity operator 
form a P W  base of ZFA. This is because of two facts: 

(i) Any monomial can be expressed as a linear combination of the normal ordered 
monomials. 
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(ii) The normal ordered monomial acts on the identity vector in H to give a vector, 
which is a base vector. In addition, different normal ordered monomials yield different base 
vectors. Thus thcse normal ordered monomials are linearly independent because the action 
on H is a representation of ZFA, and the base vectors in H are considered to be linearly 
independent. 

Thus every polynomial of ZFA can be expressed as a linear combination of normal 
ordered monomials. We thus have these monomials as the PBW base of ZFA. 

2.6. Induced represenrution 
The two elements of =A: 

e t (z )  = Bi(z  - +nw)Ai(z) eAz) = Ai(z)B'(z + i n w )  (15) 

commute with any generating operators of ZFA. We also have from (3). (4): 

Ai(z)Bj(z  - in,) = 6i,el(z) Bi(z + $nw)Aj(z)  = &jez(z ) .  (16) 

However, el and ex are not proportional to the identity operator in the fundamental 
representation, in which all base vectors of (12) are considered to be linearly independent. 
Next we add two linear relations to these vectors to get an induced vector space H'.  These 
relations are (summation over repeated indices is assumed): 

I.. . bi(z  - $nw)ai(z) .  . .) = I . .  . l  . . .) ( 1 7 4  

I.. . ai(z)b'(z + i n w ) .  . .) = I.. . I  . . .). ( 1 7 ~  

Equation (17) provides many linear relations of the base vectors of the fundamental 
representation. Figure 6 gives some examples of these relations. For simplicity, in the 
following we further assume that Zb = z - $nw and zo = z (or z .  = z ,  zb = z + ;nu) are 
two successive z's in the normal ordering. 

Note that for z., = z ,  we can have either Zb = z - $nu or zb = z + i n w  but not both, 
for otherwise we would have 

B i ( z  + inw)A,(z)B'(z - i n w )  = Gi,e2(z)Bk(z - $nu) = Bi(z + inw)&el(z),  

If q ( z )  = e&) = 1, then i = j = k implies Bk(z - fnw)  = 0, j = k = i implies 
B'(z + +nu) = 0. The statement zb = z i i n w  is actually still impossible. When 
e l (z ) (ez (z ) )  = 1 ,  (15) and (16) imply that any non-trivial representation of such A ,  B must 
be infinite dimensional. 

We must verify that (17) is consistent with the algebra. For exampIe. let Ajo(z) act on 
(17u), then 

I 

LHS = Ajo(z)l . . . bi(z - $nw)ui(z).  . .) 
- j'i - . . . r . .  .rji,  (0)l.. . b"(z - intu) .  . .uy(z)ui(z).  . .) 
= r . . . 8j i6 jqc] .  . .b"(z - +nw)uy(z)ui(z). . .) 
= r . . . I.. .b"(z - $nw)uj,(z)uj(z). ..) 

RHS=Aj,(Z)I ... I . . . )  

= r  . . . I . . .  aj(z)  ...) 

= LHS. 
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Figure 6. (a) Linear relation (17) of the vectors which makes some vecton in H null. (b) A(r )  
acting on equivalent vectors still gives equivalent vectors. 

One can similarly check other cases. Thus the null vectors of H' still yield null vectors, 
i.e. equation (17) is consistent with the ZFA. 

Next we prove that H' is not totally null. For this purpose we first define (@I as a dual 
vector of space H, 

(@If) = 
for each base vector corresponding to the normal ordered monomial If), where m is the 
number of generators in F .  We have 

(@1(1  . . .  b ' ( z - - n w ) a i ( z )  ... ) - I  . . .  1. . . ) )=0 .  

Thus (+lp) = 0 if I+) is null due to (17). However, (@If) = (n)-"/* # 0 shows 
that there are still many vectors which are not null under the equations (17). Thus H' 
is not null. In this way, we have established a representation of ZFA where the central 
element e l ( z )  = l(ez(z) = 1). After properly renormalizing B ( z )  and A(z)  we can change 
el (z)(ez(z))  to other given functions of z. 

3. Co-module and fusion of ZFA 

3.1. L-operator and co-module of ZFA 

For the matrix operator L(z){ and S ( L ( z ) ) / ,  acting on Ho, satisfying 

S(z ) iL( z ) j  =&kid = L(z)jS(z)! 
rC/ (z l  - z 2 ) i ( z l ) i : ~ ( z 2 ) ~ , "  = L ( Z ~ ) : L ( Z ~ ) ~  i' rity i"j" ( z i  - zz) 
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giving 

(184 i" .U .I 

s(z2$'rYT(z1 J '1 - z?)L(zl)i: = L C Z ~ ) ~ ' T ~ , /  (zI - Z ~ ) S ( Z Z ) ~  

L(zl)f:rj,;'(zz -z t  - nw)S(zz),j' = ~(z?),. ?' riif j'i" (zz - 21 - n w ) ~ ( z ~ ) f '  (Igc) 

(W 

and A(z) and B(z) acting on H', satisfying ZFA, we can construct a co-module of A ,  B as 

~(zl)t's(z2),j'r:~Y(z1 - 22) = rY(z1 - z~)s(z~),, i" ~ ( z l ) ,  i" 

ai(z) = L(z)~'A,,(z) bi(z) = B'(Z)S(Z + +nw$ 

acting on Ho 8 H', also satisfying the =A. The proof is straightforward. This co-module 
is a general property of the ZFA. Note that r ( z )  itself can satisfy equation (18) and thus we 
can construct a co-module with the r(z) matrix. 

3.2. A solwble model 

Consider an antiautomorphism operator of Ai(z) and regard it as the transportation of Ai(z) 
in the Hilbert space (quantum space). We denote such operators as AT(z ) i .  We similarly 
define BT(z)I .  The relation of AT, BT can also be depicted by that of A, B,  if we determine 
the direction of the action in the Hilberi space as the opposite direction of the mow (note 
that the following derivation of AT,  BT is valid for any antiautomorphism of A, E ) .  A 
representation of ZFA suggests an exactly solvable lattice model with a corresponding r-  
matrix. Suppose that the transfer matrix 

T E End(H" @ HOB HO @ .. .O HOB H') 

is formed by 

T ( z )  = B T ( z ) " L ( ' ) ( z  + 61)?L")(z + 6 2 ) ; .  . . L"'(z + 6~)lE.,Ai,,(z + 6 )  (19) 
I t  ... i. 

then by (1)-(4) and (18) we can show that T ( z )  and T(z') can commute with each other; 
i.e. 

[ T W .  T(z')l = 0. (20) 

Thus they may have the same set of complete eigenstates, suggesting a solvable lattice 
model with a non-periodic, non-reflecting boundary condition. 

3.3. Fusion of the generating operators and a third representation 

By fusion of the (n - 1) r-matrices, we can obtain one r-matrix with the direction of the 
action on one space reversed. Let (ii, i;, . . . , iL-r) = P'(0, 1, . . . , i' - 1, i' + 1,. . . , n - I )  
be a permutation of (n - 1) unequal numbers. By fusion of the r-matrices and (7a)-(7c), 
one can show [14-17] that when (il, i2,. . .) = P(0. I , .  . . ,; - 1,; -I- 1,. . . , n - I) = 0 
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Otherwise, when 

ii = i, 

the left-hand side of (21) equals zero. 

exchange properties as the A(z)'s.  We have 

for some I ,  m E Z, 

Using this equation, we can compose an operator &(z) by B(z)'s, which have the same 

1 1)w) ... B'f (2 -w)  

Applying the same procedure to B(z') as that used in (23), we can verify 

Equations (23) and (24) are the same as (4), (1). Thus, we can fuse (n - 1 )  B's to 
obtain the A's. Similarly, by skew antisymmetrizing (n - 1) A's, we can obtain Ej(z) with 
the same exchange properties as the B's.  In particular, we have 

which are the central elements of the PA. One can also impose them to be constants 
in certain representations. In this way, we can get a representation of the full ZFA in a 
representation with only one type of generator B (or A). So far we have constructed the 
thud representation of ZFA. 



Then the L operators satisfy (26) 
Furthermore, we also have 

L*(Z)jL'*(Z)jk = 6it 

as required by equation (8) in [ I l l .  The difference equation of Ai(z): 

L+(z + fA$(A,(z) 0 I ) i ' - ( z ) { ,  = nAi(z + A) 

and the exchange relations of Ai(z) and e: 
+ , j"  - j'i' + , Y A '  (Ai(z) 8 I ) L  (z )j - rji (z' - z + f A ) L  ( z  ) j ,  ( [(z) 8 I) 

-1- I J - r -  I j' L (Z ) j ; f (Ai(r)  @ I )  = r;'(~' - L - nw)(Ai.(z) 8 I ) L  (Z ) j v  

can be derived from (27) and (1H4). These equations are similar to equations (5.1) and 
(4.47) in [7]. 
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Figure 7. (a) K(:r'); (b) ,t(:z'); (c) proof of reflection equation (290); and (d) equation (29b). 

5. Reflection equation and solvable model 
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5.2. Solvable model with a reflecting boundary condition 

We may use representations of the ZFA as the left-hand and right-hand sides of boundaries 
to construct a solvable model with reflecting boundary conditions. It is easy to see that the 
operator 

i"ji $" .I j;.., 
r;,?(z - zl)riVj2 (z  - 2 2 ) .  . . ri,w$j*(z - ZN)A~(NI(Z) = ai(z)j, , , ,  

is a co-module of Ai&), acting on V, @ . . . @ VN @ H'. We construct the transfer matrix, 
acting on H" @ VI @ ..  . 0 VN @ H', 

., ., 

T ( z )  = E ( z ,  z + 8); @ K ( z  4- 6,Z) j  

K ( z ,  z'); = B * ( Z ' ) ~ A * ( Z ) ~  ~ ( z ,  2'); = ai(z)B(z')j .  

Then the transfer matrices T ( z )  and T(z') commute; i.e 

T(z')T(z) = T(z)T(z')  (30) 

for arbitrary z ,  z'. The proof is depicted in figure 8. We thus have a solvable model with a 
reflecting boundary condition (17-201. 

6. Discussion 

We may put B'(z)  = Aj+"(z) in equations (1)-(4) and rewrite the equations: 

S:y(zt - zz)Ai,(zi)Aj,(zz) = Aj(zz)Ai(zi) (31) 

where S is composed by r-matrices. Our construction shows that, provided S satisfies the 
YBE and the unitarity condition, we can generically have a fundamental representation of 
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Figure S. (a) a,(z), the CO-module of Ai ( r ) :  (b) T ( z ) :  and ( c )  proof( (30) using (9) ai (29). 

the algebra. One can easily check these conditions by reversing the order of three operators 
in different ways (see (14)) and by reversing the ordering of two operators twice. 

In this way, we see that the following extension of the ZFA With r-InafJkS given in (5) 
is self-consistent. Extend equation (3) to 
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rCj’(z1 - zz - $ n ~ ) B j ( z z ) A i , ( z ~ )  = A h  - z ~ ) A i ( z ~ ) B j ’ ( z z )  + Gij.S(zl - zz - f n w ) p  

(32) 

with a compatible change of equation (4), where A is an a rb i t rq  c number function of z 
and p is a constant. Let rl and -rz be r ( z )  m a ~ c e s  with a different modular parameter t, 
and r3 = id, we clearly have a self-consistent P A .  We then put h(z, - z2) as the function 
t ( ( l / t 2 )  given in [12]. The ZFA becomes the same as equations (18)-(20) given by Foda 
ef al [12]: 

provided 

LE)/ = Qi(oy(w”*). 
The intertwining relations 

can also be obtained. These are similar to those in [12]. Thus these equations are self- 
consistent. 
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